作者
Xinyu Zhang
劉祝安
摘要
This article considers the problem of inference for nested least squares averaging estimators. We study the asymptotic behavior of the Mallows model averaging estimator (MMA; Hansen, 2007) and the jackknife model averaging estimator (JMA; Hansen and Racine, 2012) under the standard asymptotics with fixed parameters setup. We find that both MMA and JMA estimators asymptotically assign zero weight to the under-fitted models, and MMA and JMA weights of just-fitted and over-fitted models are asymptotically random. Building on the asymptotic behavior of model weights, we derive the asymptotic distributions of MMA and JMA estimators and propose a simulation-based confidence interval for the least squares averaging estimator. Monte Carlo simulations show that the coverage probabilities of proposed confidence intervals achieve the nominal level.