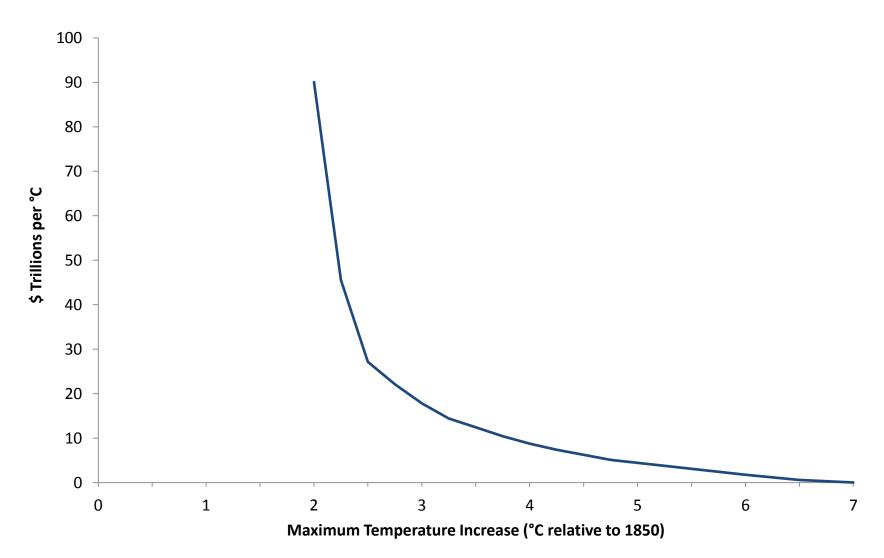
# Climate Change: Options and Policy Implications

Robert Mendelsohn 5<sup>th</sup> Congress EAARE

# Objective

- William Nordhaus 1991
- Minimize Sum of Damage (D) and Mitigation
   Costs (C) given the Emission-Temperature link
- Min  $\int [D(T)+C(E)]e^{-rt} dt s.t. T=f(\int E_t dt)$
- Efficient Mitigation for each polluter i, j:

MC<sub>j</sub> =MC<sub>i</sub> =∫MD(T)e<sup>-rt</sup> dt


# Challenge is to Measure Cost and Damage

- Must look out over a long time horizon
- GDP, energy, carbon intensity get more uncertain into the future
- Link between emission and damage uncertain especially over long time horizon
  - What is climate sensitivity?
  - How much damage at each climate?
  - Can adaptation lower damage?

# Cost of Mitigation is High

- IAM literature has long argued lowering cumulative emissions is increasingly expensive
- Blanchard et al 2015 measure the marginal cost of temperature targets
- The calculation assumes efficient global mitigation starting in 2020

#### Marginal Abatement Cost for Alternative Temperature Targets



#### What damage justifies such targets?

- Use DICE-2013 (Nordhaus 2013) to calculate alternative quadratic damage functions
- DICE-2013 has the following damage function
- D=GDP\*.000267\*T<sup>2</sup>
- This damage function leads to a maximum temperature of 3.3°C
- Raise (lower) coefficient above to lower (raise) temperature maximum

| Max<br>Temp | Damage<br>Parameter | Year<br>Emissions<br>Stop | Social Cost<br>of Carbon<br>2020<br>(\$/ton) |
|-------------|---------------------|---------------------------|----------------------------------------------|
| 4°C         | .0001335            | 2155                      | 10.7                                         |
| 3°C         | .0003658            | 2110                      | 28.7                                         |
| 2°C         | .0011695            | 2065                      | 85.3                                         |

## Annual Damage

- Applying each damage function to DICE 2013 yields a separate optimal mitigation path starting in 2015
- Emissions accumulate and temperatures rise
- Annual damage increases with higher GDP and temperature
- For each temperature target, there is a date where emissions fall to zero.

## **DICE Predicts Annual Damage**

- For each temperature target, there is a path of annual damage that rises over time
- The key to temperature targets is that damage has to be high enough to eventually choke off emissions
- Calculation reveals annual damage for 2°C, 3°C, 4°C targets at 2065, 2110, and 2155 when emissions should fall to zero for each target respectively

## Annual Damage in Billions (Damage/GDP)

| Maximum<br>Temperature | Annual<br>Damage<br>2065 | Annual<br>Damage<br>2110 | Annual<br>Damage<br>2155 |
|------------------------|--------------------------|--------------------------|--------------------------|
| <b>4°</b>              | 2,200                    | 10,600                   | 24,000                   |
|                        | (0.8%)                   | (1.5%)                   | (2.4%)                   |
| <b>3°</b>              | 5,100                    | 19,200                   | 31,400                   |
|                        | (1.8%)                   | (3.2%)                   | (3.1%)                   |
| <b>2°</b>              | 11,400                   | 27,400                   | 43,600                   |
|                        | (4.1%)                   | (4.6%)                   | (4.3%)                   |

# Why are these damages so high?

- Very expensive to drive emissions to zero

   Social cost of carbon is \$218 in 2110 in 3°C
   scenario
- Damage from a ton of emission is spread out across centuries
- Emission (ton) in 2015 causes about \$1160 of undiscounted damage but has a present value of just \$17

# What are measured damages by sector?

- Market: Agriculture, coasts, energy, forestry, water
- Nonmarket: health, ecosystems
- Effects include mean climate change and extreme events
- Two catastrophes included: slowing ocean circulation and melting West Antarctic Ice Sheet

## Assumptions

- Assume carbon dioxide fertilization
  - Confirmed by laboratory experiments
  - Consistent with ecosystem change over last million years
  - Built into modern ecosystem models
- Assume efficient private adaptation:
  - Benefit of change in behavior or investment exceeds cost
  - Predicted behavior for profit maximizing and utility maximizing individuals
  - Lowers damage by average factor of 4

## **Public Adaptation**

- Public adaptation has many joint beneficiaries
- Examples include pollution control, pubic health, conservation, coastal protection
- Assume governments will do public adaptation efficiently
  - Governments poor record of efficiency
  - But more likely to do adaptation efficiently than mitigation since it directly serves constituents

### Annual Market Impacts (billion USD)

| Sector      | 2065 | 2110  | 2155  |
|-------------|------|-------|-------|
| Temperature | 2°C  | 3°C   | 4°C   |
| Agriculture | 55   | -25   | -125  |
|             | (30) | (100) | (200) |
| Forestry    | 4    | 8     | 0     |
|             | (2)  | (4)   | (8)   |
| Water       | -20  | -60   | -120  |
|             | (25) | (50)  | (100) |
| Coastal     | -40  | -300  | -500  |
|             | (20) | (150) | (250) |
| Energy      | -15  | -50   | -100  |
|             | (10) | (50)  | (100) |

### Annual Nonmarket Impacts (billions USD)

| Sector      | 2065  | 2110  | 2155  |
|-------------|-------|-------|-------|
| Temperature | 2°C   | 3°C   | 4°C   |
| Storms      | -10   | -50   | -100  |
|             | (5)   | (25)  | (50)  |
| Ecosystems  | 5     | 10    | -30   |
|             | (20)  | (25)  | (100) |
| Health      | 0     | -50   | -100  |
|             | (50)  | (100) | (200) |
| Ocean       | 2.5   | -50   | -250  |
| Circulation | (2.5) | (50)  | (400) |
| Melting Ice | -20   | -150  | -250  |
| Sheets      | (50)  | (200) | (400) |

### Aggregate Impacts (billions USD)

| Sector      | 2065    | 2110    | 2155    |
|-------------|---------|---------|---------|
| Temperature | 2°C     | 3°C     | 4°C     |
| TOTAL       | -39     | -717    | -1575   |
|             | (86)    | (302)   | (703)   |
| (% of GDP)  | -0.02%  | -0.14%  | -0.16%  |
|             | (0.04%) | (0.06%) | (0.07%) |

### Annual Damage Gap (billions USD)

| Temperature<br>Target | Needed<br>Damage | Likely<br>Damage | Damage<br>Gap |
|-----------------------|------------------|------------------|---------------|
| 2°C                   | \$11,400         | \$39             | \$11,300      |
| <b>3°C</b>            | \$19,200         | \$717            | \$18,500      |
| 4°C                   | \$24,000         | \$1,575          | \$22,500      |

## Damage Gap

- Huge discrepancy between damage that is needed to justify targets and damage we can predict
- Very unlikely that damage can be found to justify 2°C target- too soon and too marginal
- Higher targets involve far future events and more significant temperature signal- may find damage- but there is a lot of missing damage

# **Policy Implications**

- Nordhaus 1991 conclusion still holds- purpose of climate policy is to slow the accumulation of greenhouse gases
- Policies to terminate greenhouse gas emissions are premature
- Adaptation is going to have to be actively pursued
- We have time to create efficient global governance of climate change