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Energy policy objectives (low carbon +)

The objectives of energy policy for many countries are basically three:

— Transition to a low-carbon energy system (involving cuts of at least 80% in greenhouse
gas (GHG) emissions by 2050, which will require the almost complete decarbonisation
of the electricity system), and a wider ‘green economy’

— Increased security and resilience of the energy system (involving reduced dependence
on imported fossil fuels and system robustness against a range of possible economic,
social and geo-political shocks)

— Competitiveness (some sectors will decline as others grow — allow time for the
transition) and cost efficiency (ensuring that investments, which will be large, are
timely and appropriate and, above all, are not stranded by unforeseen developments)
and affordability for vulnerable households (special arrangements if prices continue to
rise)

Only the first of these objectives is relatively recent.

Outcomes on the other two will depend on how and how vigorously the
decarbonisation objective is pursued.
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The inexorable increase in energy use and CO, emissions
Global primary energy demand by region
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Energy unequally consumed

Primary energy consumption in selected countries in 2011
(tonnes of oil equivalent per capita)

High consuming countries Major developed economies Emerging economies Lower-income countries
Iceland 17.9 United States 7.0 South Africa 2.8 DR Congo 0.4
Qatar 17.8 Australia 54 PR China 2.0 Tajikistan 0.3
Trinidad and Tobago 155 Korea 5.2 Argentina 2.0 Nepal 0.3
Kuwait 11.5 Russian Federation 5.2 Thailand 1.7 Cameroon 0.3
Netherlands Antilles 10.9 Netherlands 4.6 Mexico 1.7 Haiti 0.3
Brunei Darussalam 9.3 France 3.9 Turkey 15 Yemen 0.3
Oman 8.9 Germany 3.8 Brazil 1.4 Myanmar 0.3
United Arab Emirates 8.4 Japan 3.6 Indonesia 0.9 Senegal 0.3
Luxembourg 8.0 United Kingdom 3.0 Nigeria 0.7 Bangladesh 0.2
Canada 7.3 Italy 2.8 India 0.6 Eritrea 0.1
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Source: Bazilian and Pielke 2013

Different interpretations of ‘energy access’

Actual and projected global per capita electricity consumption (kWh/year)

High (2035 = US 2010)
EIA (2035 = projected)

IEA Definition of Energy Access (2012) l
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The dominance of fossil fuels
Global primary energy demand by fuel
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Energy use by sector
OECD and non-OECD countries
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Proportion of demand met by electricity
OECD non-OECD countries
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Reserves, resources and carbon budgets

= Conventional 2P reserves in production
or scheduled b

1107 = Reserve growth 204 = Conventional 2P reserves in production
__100{ * Undiscovered _ 18] ¢ scheduled
= = Arctic =) = Reserve growth
o 904 ) i ) =
c 5 = nght tight oil _ cm 16 Undiscovered
© — 804 =Mined natural bitumen S £ qal =Arctic
B g 704 " In situ natural bitumen o8 Tigh
28 = Extra-heavy 3 E 127 = Tight gas
o] € 604 = Mined kerogen ail o = = Coal bed methane
ag 50 ®m /n situ kerogen ol a @ 1071 .shale gas
D = Natural gas S e¢w 8
+— ) 409 liquids = ()
8= 382 6
0o 307 oo
S 207 s 4
& S
10 2
0 0
0 1,000 2,000 3,000 4,000 5,000 100 200 300 400 500 600
Remaining ultimately recoverable resources Remaining ultimately recoverable resources
(billions of barrels) (trillions of cubic metres)
Cc
127 o Hard coal reserves 7,000 1
® Reserves
B Hard coal non-reserve resources
10 6,000

O Non-reserve resources

Lignite reserves
B Lignite non-reserve resources

emissions (Gt)
B
f=)
o
o

Cost of production (2010 US$ per GJ)

1 N
0 10 20 30 40 50 60 70 Ly O F
Remaining ultimately recoverable resources (ZJ) °a Q v



UCL Institute for Sustainable Resources

Oil, coal and gas prices

(gas unit 2010 USD/million BTU)
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Major possible, but uncertain, developments
driven by decarbonisation (1)

Energy Demand: determines how much supply, and what kind
of supply, is required

 Demand reduction: efficiency (rebound effect), lifestyles

 Demand response: smart meters/grids, load smoothing, peak/back-up
reduction, storage, leading to implications for

* Network design

 Key demand technologies: most importantly likely be electric vehicles
(with or without fuel cells), which could also be used for electricity
storage/load smoothing, and heat pumps, both of which would use the
decarbonised electricity. However, both technologies are in substantial
need of further development and their mass deployment raises
important consumer/public acceptability, as well as infrastructure,
issues.
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Major possible, but uncertain, developments
driven by decarbonisation (2)

* Decarbonisation of electricity (and its use for personal
transport and residential heat). This depends on the
development and deployment of four potentially important
low-carbon options:

— Large-scale renewables: issues of incentives, deployment, supply
chain, storage technologies, intermittency, market design (zero
marginal cost)

— Small-scale renewables: issues of planning, institutions (distribution
networks)

— Nuclear power: issues of demonstration, cost, risk (accident, attack,
proliferation, waste, safety, decommissioning), public acceptability

— Carbon capture and storage (CCS): issues of demonstration,
feasibility, cost, risk (storage, liability)
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Major possible, but uncertain, developments
driven by decarbonisation (3)

Bioenergy - thorny issues related to:

 Carbon reduction: how is biomass produced?
* Environmental sustainability: issues of land use, biodiversity

* Different uses of biomass: competition between bioenergy
and food

* Social issues: issues of power, livelihoods, ownership and
control
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Major possible, but uncertain, developments
driven by decarbonisation (4)

Internationalisation in relation to:

 Technology: e.g. global research, innovation, technology
transfer. Balance between competition and co-operation

* Trade: e.g. bioenergy, electricity, carbon, border taxes

* International integration: grids (e.g.high-voltage DC
electricity), markets (European Roadmap 2050)
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Pipeline of selected energy technologies showing
progress required by 2020

Source: Energy Research Partnership 2010 Energy innovation milestones to
2050, March, ERP, London
www.energyresearchpartnership.org.uk/tiki-download file.php?fileld=233
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Options and choices

* Different countries have different options and are likely to make different
choices across all these dimensions, depending on their energy history,
culture, resource endowments and international relations.

* Choices are essentially political (though industry will be inclined to argue
that the country concerned ‘needs’ their favoured option).

* The options will play out differently in terms of energy security and cost

 The economic and political consequences of making the wrong choices are
potentially enormous

* Balance between developing portfolios (diversity) and going to scale
(picking winners — economic as well as energy).

* Importance of demand side (historically supply needs have been
substantially over-estimated)

e Need forimmediate decarbonisation and avoidance of future carbon lock-
in
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Emissions trajectory to limit
temperature change

Fossil fuel related emissions: BAU and emission
abatement scenario (GtCO2)
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Source: Stern Review, Part Ill, Chapter 9
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Primary energy demand in different global
energy scenarios/projections for 2040
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Modelling future energy system developments

e Models are essential to determine outcomes of
complex systems

 Model results depend on three crucial factors (in
addition to the expertise of the users):

— Robustness of structure: TIMES Integrated Assessment
Model (TIAM-UCL)

— Plausibility of input assumptions
— Data quality

* Provides integrity of analysis so that work can be taken
seriously
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TIAM-UCL finds the cost-optimal global energy system
that meets energy demands within 16 individual regions

* Technologically-detailed, bottom-
up energy system model

* Models the energy system by
maximising global welfare over
the duration of scenario

* Optimises energy service
demands for 16 regions given
available primary energy sources
and technologies
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The long-term future of energy systems is subject to
numerous uncertainties

* Importance of different input assumptions
— Regional and global population and GDP growth rates

— Costs and rates of low-carbon technology deployment (carbon
capture and storage, solar PV, electric vehicles etc.)

— Fossil fuel production costs and availability
— Alternative energy sources (bio-energy, hydrogen etc.)
— Temperature rises
— Climate policy
* Importance of being able to vary these assumptions in
the model

* Need for sensitivity analysis to see which assumptions
the model is most sensitive to
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How long can we delay action while
limiting climate change?

* Canusing integrated
assessment models to examine
climate and energy system 35
dynamics in conjunction

When must global emissions

peak and how quickly they 3 ONC

must they decline to stay within | 2.5 4%

temperature limits? g ®3%
* The 2°C target is now only £, 2%

achievable if annual global CO, R S 1%

emissions can fall by at least 3% 15 R

per year 2010 2015 2020 2025 2030 2035 2040 2045 2050

Peaking year

* |tis not possible for emissions
to peak after 2035 and still
restrict the temperature rise to
2°C.
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Global primary energy production varies according to
temperature thresholds
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coal consumption and availability of carbon
capture and storage
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Electricity generation is much higher when mitigating
emissions and rapidly shifts to low-carbon technologies
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Per capita emissions fall in all economic regions
In mitigation scenarios

5 °C scenario 3 °C scenario
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Under 2 °C, CO, price rises to $300/tonne in 2050, but
this can vary significantly depending on assumptions
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* CO, price in 2 °C scenario reaches over a $100/tonne in 2025 &

increases at around 4%/year

* If negative emission technologies are not allowed, CO, price more

than doubles to over $600/tonne by 2050.

* CO, prices, however vary according to the delay in implementing
global emissions reduction (i.e. the later the date on which global
emissions peak); the longer the delay, the greater the required level

of emissions reduction later
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Global electricity generation in the four scenarios (left)
and its GHG intensity (right), per capita emissions (2DS,
bottom left), CO2 prices (bottom right)

0
65 1 550 -
60 - 02DS E 500 -
] B
55 @2DS-nobioCCS _ 3 450 1
=50 - <)
= a 400 -
2, m3DS Z
& — S _ 350 |
40 - s =
'% WREF — g = 300
3351 5 3 - &= 2DS
£ 30 %5 2 250 X
Q 3 \
225 £ 200 - 2DS-nobioCCS N
2 2 ] \
£20 £ 150 1o \
15 % 100 | * N
10 50 | —@—REF ‘.\
~
5 0 T T T T T \‘__\__.__\_ _\--.‘\
0 L] L] L] 50 . 2010 2015 2020 2025 2030 2035 2040 2085 2050

2010 2015 2020 2025 2030 2035 2040 2045 2050

700 -
20
High 600 -
= 18 1 2 DS_NOBIOCCS
16 4 e Middle 500 - —@-2D5
)
E- 14 4 Low T —A—3DS
8. 1 | £ 400 -
S~
9 &
g 10 3 300 _--u
8 1 iieeeensen. 5 -
5 8 e 3 -
26 0 el S 200 e
g 4T e r____.——‘
o — e 100 - P
T 2 b ’I
O N N e —h
0 0w e~ ——— ‘

2010 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050



UCL Institute for Sustainable Resources

Estimates of remaining fossil fuel reserves and resources and
how these relate to 2 °C climate change budgets
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Which regions contain fossil fuels that should stay in
the ground to stay within the 2°C carbon budgets?

* Burning all current fossil fuel  LETTER
Feserves excee d t h e 2 0 C Tlllf gel(_)gr_ztlphiczil gisltributi(_)n ()tf fgsf(ijl fuels unused
when limiting global warming to
‘carbon budget’ by around

makers have generally agreed that the average global temper-

[
Pol;
re e I l I l e S ature rise caused by greenhouse gas emissions should not exceed
2°Cabove the average global temperature of pre-industrial times'.

But to date unknown which
of oil, gas and coal are and
aren’t developed and who

owns these

It has been estimated that to have at least a 50 per cent chance of
keeping warming below 2 "C throughout the twenty-first century,
the cumulative carbon emissions between 2011 and 2050 need to be
limited to around 1,100 gigatonnes of carbon dioxide (Gt €O2)*.
However, the greenhouse gas emissions contained in present esti-
mates of global fossil fuel reserves are around three times higher
than this**, and so the unabated use ofall current fossil fuel reserves
is incompatible with a warming limit of 2 °C. Here we use a single
ntegrated assessment model that contains estimates of the quanti-
ties, locations and nature of the world’s oil, gasand coal reserves and
resources, and which is shown to be consistent with a wide variety
ent assumptions’, to explore the
ons limit for fossil fuel produdion in dif-
gions. Our results suggest that, globally, a third of oil reserves,
halfof gas reserves and over 80 percent of current coal reserves should
remain unused from 2010 to 2050 in order to meet the target of
27C. We show that development of resources in the Arcticand any

= Conventionsl 2F reserves in production
or scheduled

increase in unconventional oil production are incommensurate with
effortsto limit average global warming to 2 °C. Ourresults show that
policy makers” instincts to exploit rapidly and completely thei

n aggregate, inconsistent
mitments to this temperature limit. Implementation of this policy
commitment would also render unnecessary continued substantial

expenditureon fossil fuel exploration, because any new discoveries
could not lead to inc

ased aggregate production.

Recent climate studies have demonstrated that average global temper-
ature rises are closely related to cumulative emissions of greenhouse
gases emitted over a given timeframe™*”. This has resulted in the con-
cept ofthe remaining global ‘carbon budget” associated with the prob-
ability of successfully keeping the global temperature rise below a certain
level*”, The Intergovernmental Pand on Climate Change (IPCCY’
recently suggested that to have a better-than-even chance of avoiding
more than a temperature rise, the carbon budget between 2011
and 2050 is around 870-1,240 Gt CO,.

Such a carbon budget will have profound implications for the future
utilization of oil, gas and coal. However, to understand the quas
thatare required, and are not required, under different scenarios, wefirst
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Scenarios were run under a wide range of assumptions on
both supply and demand sides and climate change
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* Left panel shows range in projected global GDP from all scenarios
used in the IPCC 5" Assessment Report

* Right panel shows cumulative fossil fuel production for different
temperature scenarios (2 °C, 3 °C, 5 °C) and sensitivity of 2 °C
scenario to assumptions on fossil fuel costs, bioenergy, oil and gas
availability, demand (GDP) and carbon capture and storage (CCS)
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Regional distribution of reserves unburnable
before 2050 to stay below 2°C

_Regon | ol |  Gas |  Coal
[ .G % | Tom % | Gt %
23 21% 4.4 33% 28 85%
Canada 39 74% 0.3 24% 5.0 75%

China 9 28% 2.6 75% 116 61%
C & S America 58 39% 4.8 53% 8 51%
Europe 5.0 20% 0.6 11% 65 78%

-
-

27 18% 31 50% 203 94%
India 0.4 7% 0.3 27% 64 80%
Middle East 263 38% 46 61% 3.4 99%
OECD Pacific 2.1 37% 2.2 56% 83 93%
ODA 2.0 9% 2.2 24% 10 34%

United States 2.8 6% 0.3 4% 235 92%
Global 431 33% 95 49% 819 82%
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Oil and coal consumption significantly different between 2°C
and 5°C scenarios but gas acts as a ‘transition’ fuel
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Limited effect of CCS on unburnable reserves, energy inputs for oil sands
must be decarbonised, and all Arctic resources are unburnable
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* CCS has only a modest effect on the production of reserves

* Production of oil sands in Canada continues but this is
accompanied by a rapid and total de-carbonization of the
auxiliary energy inputs required

* No development of oil or gas resources in the Arctic
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Conclusions (1)

* Modelling tools can provide a holistic analysis of system-wide
implications of a wide range of energy futures

 Addressing uncertainty: wide range of possible outcomes and
developments can often be better assessed through scenarios than
short-term deterministic ‘forecasts’

* Such uncertainties are exacerbated by the uncertainty surrounding
the severity of future efforts to address climate change

 There is a huge amount at stake: economically, socially, politically
and environmentally

* For 2°Cscenarios:
— Politics: Inconsistency of stated commitments to
* Climate change as well as economic and (geo-) political implications
* Licensing constraints for fossil fuel exploration?
— Corporates: Justification for E&P financing

* New discoveries cannot lead to increased aggregate production (e.g.
European shale gas)

e At the limit may be too risky for delivery of long-term returns
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Conclusions (2)

* Effective climate policy (i.e. keeping to 2 °C) will
depend on a combination of factors:

— Political will = recognition that costs of climate change
are likely to greatly exceed its costs of mitigation

— Recognition that co-benefits (especially health) of
reducing fossil fuel use reduce net mitigation costs
further (cf IMF, Lancet Commission studies)

— Further cost reductions in low-carbon technologies

— Desire in importing countries to limit exposure to fossil
fuel exporters (i.e. energy security)

— So the limiting factor in ultimate fossil fuel consumption
will be on the demand rather than the supply side
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